RETIMUR - Asociación Afectados de Retina de la Región de Murcia

Retina Artificial retro-alimentada podría devolver Agudeza Visual normal y restaurar la visión del color.

17 de septiembre de 2013)

La Oficina de Patentes de EE.UU. ha otorgado la patente no. 8.433.417 a NewCyte Inc. para un implante de retina artificial de nanoestructura de carbono. NewCyte fue comprado en 2009 por Natcore Technology Inc.

 http://www.natcoresolar.com/core/wp-content/uploads/2013/07/natcore-solar-technology-green-energy-logo.png

"Hay varias patentes de retinas artificiales", dice el Dr. Dennis Flood, director de tecnología de Natcore y el inventor del dispositivo. "Pero todos ellos tienen limitaciones. Algunos requieren que el paciente tenga vista. Algunos restauraran una agudeza limitada, o la capacidad de detectar el movimiento es pobre o solo se distingue entre luz y oscuridad. Algunos son voluminosos y / o requieren prótesis.

El nuestro es un implante con alimentación propia que no requiere de una cámara, un transmisor, o cualquier otro dispositivo externo. Sería ejecutable mientras los nervios de los pacientes están vivos y sólo los bastones y los conos estén afectados.

Y tiene el potencial de ser la longitud de onda selectiva, de modo que la visión del color puede ser presentada de nuevo a las personas cuya única posibilidad ahora es un sol negro y blanco ".

La necesidad de esta retina artificial es sustancial. Según la Sociedad Americana de Especialistas en Retina (ASRS), se estima que 15 millones de estadounidenses padecen degeneración macular relacionada con la edad (AMD). ASRS también dice que la retinitis pigmentosa, una enfermedad genética que afecta a uno de cada 4.000 estadounidenses.

Natcore cree que ambos de estos trastornos pueden ser corregidos con su retina artificial.

La retina Natcore comprende una matriz de nanotubos de carbono, crecida verticalmente sobre un sustrato. Los nanotubos están recubiertos con un material semiconductor, y una célula solar alrededor de ellos, con la punta de los nanotubos expuestos y dispuestos para extenderse hacia los nervios ganglionares. Cuando la luz entra en el ojo y es enfocada por la lente sobre la retina artificial, una acumulación de tensión hace que los nervios reaccionen, actuando como una sinapsis y envía una señal al cerebro. Los nanotubos de carbono recubiertos actúan como varillas o conos, fotorreceptores de los ojos que convierten la luz en señales que pueden estimular los procesos biológicos.

El dispositivo Natcore se implanta quirúrgicamente. Sería un disco plano y redondo con un diámetro de aproximadamente 4 mm, más o menos el tamaño del borrador de un lápiz.

El Dr. Flood tiene 33 años de experiencia en el desarrollo de células solares y tecnología de matriz tanto para aplicaciones espaciales y terrestres en el Centro de Investigación Glenn de la NASA en Cleveland. Fue trasladado a inventar la retina artificial cuando su esposa perdió la mácula del ojo izquierdo a una edad relativamente temprana debido a una forma de degeneración macular húmeda. Su invento utilizaba en parte, la misma tecnología de nanotubos de carbono que ya posee Natcore.

"Teniendo en cuenta nuestros avances recientes con el silicio negro, el emisor selectivo y la célula solar flexible, tenemos un salto de calidad", dice Chuck Provini, presidente y CEO de Natcore. "El camino a la comercialización de las tres aplicaciones ahora es relativamente corta, mientras que nuestra retina artificial requerirá mucho más tiempo. Debido a su enorme potencial y la necesidad inmediata de que, probablemente vamos a buscar un socio de joint venture, una licencia o un comprador absoluto para llevarlo al mercado. "

Traducción: Rodrigo Lanzón.

Fuente original: http://www.natcoresolar.com/news/latest-news/

 

Oxford Biomedica y ensayos clínicos.

 

17 de octubre 2013 - Oxford Biomedica , una compañía biofarmacéutica en el Reino Unido, ha recibido el acuerdo de la Administración de Drogas y Alimentos de EE.UU. y el organismo regulador francés ANSM para reanudar la contratación de sus tres tratamientos para distrofias de retina, basados en ensayos clínicos de terapia génica.

Se trata de un estudio de Fase I RetinoStat ® para la degeneración macular asociada a la edad húmeda en el Hospital de la Universidad Johns Hopkins en Baltimore, Maryland.

Otro es un estudio de I / IIa de la Fase Stargen ™ para la enfermedad de Stargardt en la Oregon Health & Science University (OHSU) en Portland y el Institut de la Vision en París, Francia.

Y el tercero es un estudio de I / IIa de la Fase UshStat ® para el síndrome de Usher tipo 1B en OHSU y el Instituto de la Visión.

En junio, la compañía detuvo voluntariamente el reclutamiento del ensayo como medida de precaución mientras se investigaba la detección de bajos niveles de impureza en el material de ensayo clínico.

El acuerdo para reanudar el reclutamiento y la utilización de materiales de ensayos clínicos existentes se produce después de la presentación de una información completa a los organismos reguladores de Oxford Biomedica.

La compañía continuará monitoreando sus materiales de ensayos clínicos que utilizan tecnologías de última generación para garantizar su seguridad.

"Dada nuestra experiencia, se estima que los ensayos clínicos de Oxford se reanudarán en unos tres meses", dice Stephen Rose, Ph.D. ., jefe de investigación de la Fundación Lucha contra la Ceguera.

"Las terapias de gen de la compañía tienen un potencial para salvar la visión de muchas personas afectadas por enfermedades de la retina devastadores, y estamos muy contentos de que están de nuevo en marcha." Los tres tratamientos de la retina, los ensayos clínicos de terapia génica de Oxford Biomedica fueron posibles gracias a estudios de laboratorio críticos financiados por la Fundación.

 

Traducción: Rodrigo Lanzón

Fuente: Blindness.org

Modelado de las enfermedades degenerativas de la retina con células iPS derivadas de humanos: situación actual y las futuras implicaciones.

"Las células madre pluripotentes inducidas humanas ofrecen una plataforma novedosa y conveniente para estudiar tipos de células específicas para la enfermedad de los pacientes afectados y la terapéutica de prueba, y por lo tanto proporcionan un puente entre la investigación clínica y el mercado."

En las últimas dos décadas, las técnicas de avance para el análisis genético y los esfuerzos concertados de los científicos y los médicos han llevado a la identificación de un número considerable de genes implicados en enfermedades degenerativas de la retina.  Sin embargo, es necesario centrar las estrategias de tratamiento y evaluar la eficacia de una mayor comprensión de los procesos biológicos afectados por estos genes de la enfermedad. Tradicionalmente, los esfuerzos para obtener tal conocimiento se han basado en sistemas de cultivo de células sustitutas (a menudo el empleo de la sobreexpresión heteróloga) y modelos animales que, si bien es muy valiosa, no puede reproducir los aspectos críticos de la enfermedad humana. Las células madre pluripotentes inducidas humanas (hiPSCs) ofrecen una plataforma novedosa y conveniente para estudiar tipos de células específicas para la enfermedad de los pacientes afectados y la terapéutica de prueba, y por lo tanto proporcionan un puente entre la investigación clínica y el mercado.  Además, los modelos hiPSC son indefinidamente genes y proteínas en los niveles endógenos humanos renovables y expresa, el aumento de la probabilidad de que se recapitulan mecanismos de la enfermedad importantes.

Al igual que cualquier herramienta, sin embargo, las hiPSCs tienen limitaciones que deben tenerse en cuenta a la hora de elegir un modelo de la enfermedad. En efecto, el principal activo de las células madre pluripotentes - la capacidad de producir una gran variedad de tipos de células derivadas de los tres linajes germinales - puede ser un detrimento a menos tipos de células deseados pueden ser identificados y aislados, o al menos en gran medida enriquecidas. Si no, los experimentos posteriores se encuentran en riesgo de ser confundido por las influencias de variables de tipos de células desconocidos o no deseados que ocupan así la misma clase. Si se logra un enriquecimiento adecuado, también puede ser necesario para expandir las células y replantar en una variedad de superficies y diferenciarlas a un estado uniformemente maduro. Esta última tarea es particularmente importante, ya que las células madre pluripotentes son, en el fondo, modelos de sistemas de mini-desarrollo dinámicos. Como tal, es fácil de imaginar diferencias en los niveles de maduración dentro de las culturas hiPSC, que a su vez puede afectar el comportamiento fisiológico y los resultados experimentales. Para el control de esta fuente potencial de variabilidad, es útil usar cultivos de células derivadas de tejido primario como palos de medición de desarrollo para sus homólogos hiPSC-derivados. Por último, está la cuestión de la complejidad de la enfermedad. Más concretamente, ¿cuál es, a priori, la probabilidad de que un fenotipo de la enfermedad puede ser recapitulado en un tubo con un solo tipo de células? No hace falta decir que las enfermedades que requieren la participación de múltiples tipos de células o sistemas de órganos (y tal vez las influencias ambientales) plantean mayores, aunque no insuperables, desafíos.

Teniendo en cuenta las preocupaciones esbozadas anteriormente, la retina es un blanco atractivo para el modelado de la enfermedad basado en hiPSC, y no es de extrañar que la creación de líneas hiPSC de enfermedades específicas de retina está en plena vigencia. Protocolos existen ahora para la sólida generación y aislamiento del epitelio pigmentario de la retina (EPR) y la progenie neurorretiniano de fuentes de células madre pluripotentes humanas, incluyendo hiPSCs. Basado en trastornos RPE , en particular, parecen ser ideales para el modelado hiPSC, dada la facilidad y la medida en que este tipo de células se puede generar, aislada, estudiada, manipulada y probar. hiPSC-RPE puede crecer en parches pigmentados distintivos que pueden ser disecados manualmente, disociados y ampliados en una variedad de sustratos, donde forman monocapas y muestran numerosas funciones fisiológicas importantes in vitro similares a RPE humano primario prenatal. 

Como tal, hiPSC-RPE ofrece un sinfín de oportunidades para poner a prueba los efectos celulares y moleculares de las mutaciones genéticas y / o perturbaciones ambientales. Por otra parte, el estado de maduración de hiPSC-RPE se puede controlar en cultivos vivos utilizando funciones y mediciones de la resistencia transepitelial morfológicas fácilmente discernibles, siendo el último indicativo de la formación de la unión estrecha y la polarización apropiada de la célula.

"Trastornos de epitelio pigmentario de la retina parecen ideales para el modelado de células madre pluripotentes inducidas humanas, dada la facilidad y la medida en que este tipo de células puede ser generada, aislado, estudiada, manipulada y probada."

Aprovechando las características de la cultura de RPE humana, Singh et al . recientemente desarrollado "modelo en un plato 'a hiPSC-RPE distrofia macular viteliforme de Best  (BVMD). BVMD es una degeneración macular hereditaria causada por mutaciones autosómicas dominantes en la proteína de RPE-específica bestrofina-1 (BEST1). Curiosamente, RPE macular en BVMD permanece intacta incluso en el transcurso de la enfermedad, mientras que los fotorreceptores que observa degeneran con el tiempo, lo que lleva a la pérdida de la visión central. Este hallazgo sugiere que mutaciones BEST1 no son inmediatamente perjudiciales para las propias células del EPR, sino que conducen a interrupciones en la fisiología RPE que afectan a la salud de fotorreceptores a largo plazo. Consistente esta hipótesis, ya que en general no se observaron diferencias entre BVMD y control hiPSC-RPE a menos que se introdujo un estímulo fisiológico, tales como la exposición a los segmentos externos de los fotorreceptores o el agonista de los receptores purinérgicos, ATP. A raíz de estos retos, BVMD culturas hiPSC-RPE muestran fotorreceptores defectuosos, degradación del segmento exterior y la eliminación y la reducción de transporte de fluido, así como un aumento del estrés oxidativo celular. 

Los autores utilizaron a continuación, este sistema para investigar el papel de BEST1 y definir parcialmente el mecanismo celular subyacente en BVMD, que parecía implicar interrupción de la homeostasis del calcio del retículo endoplásmico.

En contraste con hiPSC-RPE, la utilidad de los tipos de células NEURORRETINIANO hiPSC derivados para examinar fisiopatología de la enfermedad queda por determinar. Por ejemplo, dada la falta de producción de los segmentos externos de los fotorreceptores en cultivo, así como la escasez general de barras en la diferenciación de cultivos de células madre pluripotentes humanas, no está claro en qué medida los efectos de las mutaciones de rodopsina en la retinitis pigmentosa (RP) pueden ser investigado utilizando métodos de cultivo disponibles en la actualidad. Sin embargo, este problema puede ser evitado mediante la diferenciación de las culturas NEURORRETINIANO hiPSC derivados por períodos de tiempo más largos, el cocultivo con EPR o el trasplante de fotorreceptores (la progenie) en el tejido de la retina.

Curiosamente, algunas mutaciones RP basados ​​en que los componentes de destino de la cascada de fototransducción puede ser propicio para el modelado hiPSC. Meyer et al .mostraron que, además de la expresión de genes clave de componentes fototransducción, las células madre pluripotentes humanos derivado de células de fotorreceptores-como exhibieron un cambio en el potencial de membrana en respuesta a exógenos 8-Br-GMPc que imitaba el interruptor de una luz adaptada a una oscuridad. Por lo tanto, las oportunidades existen probablemente para examinar los efectos funcionales de las mutaciones de los genes en fotorreceptores específicos utilizando hiPSCs, siempre y cuando las limitaciones del sistema de cultivo se tengan en cuenta.

Otra aplicación única de tecnología hiPSC a la modelización de enfermedad de la retina se ilustra por Tucker et al ., que utiliza hiPSCs de un paciente con RP esporádicos para verificar la patogenicidad de las inserciones Alu homocigotos no cubierto por exoma. En este elegante estudio, los autores encontraron que la inserción de la secuencia Alu en el exón 9 del paciente en el gen MAK impidió la expresión de una variante de empalme de MAK que normalmente se expresa en precursores de la retina. En este caso, hiPSCs ofrecen un medio eficaz no sólo para confirmar el defecto en el gen responsable de la enfermedad, pero también al mismo tiempo proporcionan una idea de su mecanismo.

Además de su potencial para modelar mecanismos de la enfermedad y evaluar la patogenicidad de mutaciones de genes, derivados de células de la retina hiPSC pueden ser utilizados para las pruebas de drogas, usando tanto de tipo externo e hiPSCs específicos del paciente para determinar los efectos de los agentes farmacológicos en función de la célula humana en condiciones normales y los estados de la enfermedad, respectivamente. Hasta la fecha, ha habido un número limitado de publicaciones mirando los efectos de los fármacos sobre las células retinianas hiPSC derivados. Meyer et al . informó el restablecimiento de la actividad de ornitina aminotransferasa en atrofia girada, hiPSC-RPE como siguiente tratamiento con vitamina B6. Los suplementos de vitamina B6 es un tratamiento conocido para la atrofia girada, sin embargo, el paciente en particular cuyos fibroblastos fueron utilizados para generar la línea de hiPSC se había considerado que no responde a la suplementación con vitamina B6 en virtud de las pruebas de sustitutos tradicionales. Por lo tanto, este estudio subraya la importancia potencial de la utilización de hiPSCs personalizados para poner a prueba los tipos de células reales (en este caso, EPR) dirigidos por una enfermedad con el fin de evaluar con mayor exactitud la eficacia del fármaco.

"Mirando hacia el futuro, es probable que la tecnología de células madre pluripotentes inducidas humanas tendrá un impacto amplio y significativo en el área de in vitro modelización de enfermedades, descubrimiento de fármacos y pruebas de terapia génica ".

En un segundo informe de Jin et al ., líneas hiPSC se crean a partir de pacientes con mutaciones asociadas a RP, incluyendo RP1, PRPH2, RHO y RP9. En este estudio, los autores observaron la muerte de las células en todas las líneas de la enfermedad entre los días 120 y 150. Sin embargo, el tratamiento con α-tocoferol dio lugar a una conservación estadísticamente significativa de células sólo en cultivos de retina que llevan la RD9 mutación. Por lo tanto, este estudio proporcionó la primera evidencia de que la tecnología hiPSC puede ser útil en la detección de las respuestas de drogas a través de numerosas enfermedades de la retina, relacionadas pero genéticamente distintas. Esta aplicación es especialmente importante para los trastornos genéticamente y fenotípicamente heterogéneas como la RP, y en última instancia, podría ayudar a reducir la lista de objetivos de la enfermedad de los medicamentos experimentales y mejorar el diseño de ensayos clínicos. Más allá de las pruebas personalizadas de agentes terapéuticos conocidos, hiPSC tecnología también ofrece una fuente ilimitada de material para los sistemas automatizados, de alto rendimiento de cribado de fármacos para interrogar bibliotecas de compuestos farmacológicos. Tales esfuerzos pueden descubrir rápidamente nuevos medicamentos para los trastornos previamente intratables.

Las pruebas de terapia génica es otra área en la que hiPSCs probablemente jugarán un papel importante en el futuro próximo. Corrección funcional de un defecto en el gen causante de la enfermedad retiniana se ha demostrado en hiPSCs específicos del paciente utilizando cromosoma artificial bacteriano mediado por recombinación homólogo, y este enfoque podría ser utilizado para reparar los genes en hiPSCs antes del trasplante autólogo. Sin embargo, la restauración de la función normal del gen en cultivos de hiPSC también debe ser alcanzable usando vectores virales que se están empleando actualmente en ensayos de terapia génica humana, siempre que el gen diana puede ser empaquetado y expresado apropiadamente. Tener sistemas de cultivo basados ​​en hiPSC para las pruebas de terapia génica sería particularmente útil para enfermedades de la retina que no tienen modelos animales correspondientes para la demostración de la eficacia del tratamiento.

Mientras que el modelado y la prueba de progenie derivada de la retina hiPSC como cultivos adherentes es preferible para los trastornos de EPR y tal vez más conveniente para los que afectan a las células NEURORRETINIANO, puede ser más beneficioso en la última situación para generar una estructura de capas. Tales estructuras de tejido 3D podrían promover interacciones entre los tipos de células de la retina que normalmente se encuentran in vivo , y por lo tanto proporcionar una representación más precisa de los efectos de la enfermedad de la retina. En efecto, informes recientes han demostrado la formación de estructuras laminares, de múltiples fuentes de células pluripotentes, incluyendo las células madre embrionarias de ratón, células madre embrionarias humanas y hiPSCs, que tienen la capacidad añadida para formar sinapsis. La capacidad de generar estos tejidos retinales derivados de células madre pluripotentes, junto con el potencial de co-cultivo con RPE, ofrece el potencial para modelar enfermedades retinianas humanas complejas (por ejemplo, degeneración macular relacionada con la edad) en un nivel que no era posible anteriormente en la ciencia.

Mirando hacia el futuro, es probable que la tecnología hiPSC tendrá un impacto amplio y significativo en el área de la modelización in vitro de enfermedades, descubrimientos de fármacos y pruebas de terapia génica. Sin embargo, es una herramienta clínica o de laboratorio poco común que se puede soportar completamente por su cuenta. Por lo tanto, esperamos que los datos de los modelos hiPSC se combinarán con la información de los modelos de observación de animales y clínicas para proporcionar información muy necesaria sobre la fisiopatología de las enfermedades de la retina humana y las estrategias necesarias para superarlos.

 

Agradecimientos

DM Gamm ha recibido subvenciones de: NIH R01EY021218, programa de la Fundación Lucha contra la Ceguera Wynn-Gund Investigación Traslacional aceleración, Macula Fundación de Investigación de la Visión, E Fundación Matilda Ziegler, Beckman Iniciativa para la Investigación Macular, Fundación Reeves y la Fundación Comunitaria del Condado de Muskingum. 

 

Fuente: NCBI

Retinoide oral mejora significativamente la función de los ojos con retinitis pigmentosa.

Foto: Sheba Medical Center, Israel. (obtenida en Wikipedia)

El tratamiento oral con 9-cis ha mejorado notablemente la función visual en pacientes con retinitis pigmentosa, de acuerdo con un estudio.

El ensayo clínico aleatorizado en Israel incluyó 29 pacientes que se sometieron a un régimen de 90 días de cuatro cápsulas diarias de 300 mg  9 - cis β-caroteno- rico en alga Dunaliella bardawil (polvo de β-caroteno, aproximadamente 20 mg) contra un placebo que comprende polvo de almidón.

Los investigadores evaluaron los cambios en la adaptación a la oscuridad con electrorretinograma en la  máxima amplitud de la onda b de la línea de base.

El cambio medio en la adaptación a la oscuridad en la máxima amplitud de la onda b del valor inicial fue 8,4. mV (microVoltios) en el grupo de estudio y de -5,9 mV en el grupo placebo. La diferencia entre los grupos fue estadísticamente significativa ( P = 0,001).

Máxima amplitud de la onda b se incrementó en más de 10 mV en ambos ojos de 10 pacientes en el grupo de estudio y en ningún paciente en el grupo de placebo.

Ambos grupos tenían campos visuales similares y MAVC.

Se necesita un ensayo clínico más amplio para determinar el régimen apropiado, dijeron los autores del estudio.

Participantes   Treinta y cuatro pacientes con RP que tenían al menos 18 años de edad. Veintinueve pacientes completaron el estudio y fueron incluidos en el análisis.

Conclusiones y relevancia  del tratamiento con 9 - cis β-caroteno aumentó significativamente la función retiniana en pacientes con RP en las condiciones ensayadas. El régimen terapéutico óptimo se determinará en futuros ensayos clínicos más grandes. 9 - cis β-caroteno puede representar una nueva estrategia terapéutica para algunos pacientes con RP.

 

Autores:

Ygal Rotenstreich, MD

Michael Belkin, MD

Siegal Sadetzki, MD

Angela Chetrit, MSc

Gili Ferman-Attar, MD

Ifat Sher, PhD

Ayelet Harari, PhD

Aviv Shaish, PhD

Dror Harats, MD

Instituciones participantes:

Sheba Medical Center, Tel-Hashomer , Israel

Maurice y Goldschleger Instituto Gabriela Eye Research, Tel-Hashomer, Israel

Unidad de Epidemiología y radiación para cáncer, Instituto Gertner de Epidemiología e Investigación de Políticas de Salud, Tel-Hashomer, Israel

Sackler School of Medicine, Universidad de Tel-Aviv, Tel-Aviv, Israel