RETIMUR - Asociación Afectados de Retina de la Región de Murcia

Los ratones ciegos vuelven a ver con oro y titanio

Por Nathaniel Scharping

(Imágen Crédito: Shutterstock)


Devolver la vista a aquellos para quienes se escapó ha sido un objetivo de los científicos durante décadas. Pero reparar o reemplazar la delicada maquinaria interna del ojo humano ha resultado difícil hasta ahora. Algunos dispositivos experimentales han logrado otorgar vista de baja resolución a los ciegos, pero la mayoría requiere el uso de componentes electrónicos voluminosos y fuentes de alimentación externas.

Pero investigadores de la Universidad de Fudan y la Universidad de Ciencia y Tecnología de China dicen que han encontrado una solución más elegante para curar algunas formas de ceguera. Simplemente intercambiaron fotorreceptores muertos a los ojos de ratones ciegos, las varillas y los conos que producen señales eléctricas cuando son golpeados por fotones, con versiones artificiales hechas de oro y óxido de titanio.

 

Ojo dorado

Los fotorreceptores diseñados toman la forma de nanocables tachonados con pequeños copos de oro, que ayudan a sintonizar la matriz para responder a la luz en el rango visible. Los cables se implantan quirúrgicamente en el mismo espacio que los fotorreceptores una vez ocupados, y permanecen en contacto físico con las células de la retina para transmitir los impulsos eléctricos a la corteza visual.

Una ilustración del periódico que muestra, de izquierda a derecha, un ojo, una retina con fotorreceptores sanos y una retina con una matriz de nanocables en su lugar. (Crédito: Tang et al.)

Los ratones en el experimento habían sido diseñados genéticamente para experimentar una degradación progresiva de sus fotorreceptores, similar a lo que sucede en personas con retinosis pigmentaria y degeneración macular. Ambas enfermedades interrumpen la capacidad del ojo de transmitir información sensorial al cerebro y, si no se tratan, pueden ocasionar un deterioro permanente de la visión. Sin embargo, el resto del ojo y el sistema de procesamiento visual del cerebro permanecen intactos, lo que significa que las señales visuales aún pueden procesarse si llegan al cerebro

Los nuevos fotorreceptores responden a la luz en el espectro verde, azul y casi ultravioleta, aunque sus cables no pueden garantizar la visión del color de los ratones. Es probable que los ajustes futuros en su método reproduzcan colores, dicen los investigadores. Publicaron su investigación el martes en  Nature Communications .

 

Cerrando la Brecha

Los investigadores probaron su sistema confirmando que las cortezas visuales de los ratones respondían cuando la luz les llegaba a los ojos. Sus células retinianas y el sistema de procesamiento visual parecían normales, informaron los investigadores. Sus pupilas incluso comenzaron a dilatarse nuevamente, otra indicación de que sus ojos volvían a ser sensibles a la luz. Habían logrado reparar el eslabón perdido entre los ojos y el cerebro.

Comparados con sus hermanos normales, los ratones anteriormente ciegos respondieron a la luz de intensidad comparable, informaron los investigadores, y los fotorreceptores artificiales fueron sensibles a puntos de luz de menos de 100 micrómetros de diámetro, o aproximadamente del tamaño de un cabello humano.

Por el momento, es difícil decir exactamente qué estaban viendo los ratones. Aunque está claro que las señales llegaban a la corteza visual, las imágenes que los cerebros de los ratones representan son un misterio por el momento. La información visual probablemente fue algo limitada, al menos, dado que los nanocables solo responden a algunas longitudes de onda de luz.
Después de ocho semanas, los ratones que alguna vez fueron ciegos y que habían sido implantados con nanoalambres no mostraron signos de incomodidad o lesión. Pero el diseño sigue siendo experimental, por ahora, los investigadores solo esperan que su trabajo conduzca a mejores dispositivos que un día podrían permitir que los humanos que han perdido la visión vuelvan a ver.

Ofthotech patrocina la investigación de terapia génica para enfermedades retinianas.

Logo RETIMUR

 

Ophthotech ha comenzado una colaboración en investigación de terapia génica que utilizará la novedosa tecnología de terapia génica para descubrir y desarrollar tratamientos de enfermedades oculares, según un comunicado de prensa.

La compañía ha celebrado acuerdos de investigación patrocinados con la Facultad de medicina de la Universidad de Massachusetts y su Centro de terapia de genes Horae para utilizar un enfoque de terapia "minigén" y otras tecnologías de administración de genes para atacar enfermedades retinianas, según el comunicado.

"Los avances en las tecnologías de terapia génica han sido prometedores y pueden proporcionar terapias transformacionales de próxima generación para pacientes con enfermedad oftálmica" , dijo en el comunicado Glenn P. Sblendorio, CEO y presidente de Ophthotech.

La estrategia terapéutica del minigen proporciona una forma abreviada pero funcional de un gran gen empaquetado en un vector de entrega de virus adenoasociado de tamaño estándar, según el comunicado.

"Nuestro objetivo en el Horae Gene Therapy Center es desarrollar la próxima generación de tecnología de administración de genes para proporcionar la transferencia de genes más eficiente y segura a los pacientes", Guangping Gao, PhD, profesor de genética molecular y microbiología y director de Horae Gene Therapy Center, dijo en el lanzamiento.

La facultad de medicina otorgó a Ophthotech "una opción para obtener una licencia exclusiva para cualquier patente o solicitud de patente que resulte de esta investigación", dijo el comunicado.

Esta terapia génica para la pérdida de la visión es segura y efectiva después de dos años

Los resultados de un seguimiento a largo plazo sugieren que la terapia genética de GenSight para la neuropatía óptica hereditaria de Leber puede proporcionar un tratamiento seguro y efectivo para la causa genética de la pérdida de visión.

GenSight desarrolla terapias génicas para preservar o restaurar la visión en pacientes con enfermedades neurodegenerativas de la retina. El candidato principal de la biotecnología es GS010, que actualmente se encuentra en un ensayo de Fase III para el tratamiento de la neuropatía óptica hereditaria de Leber. Habiendo realizado un seguimiento de un estudio de Fase I / II, GenSight ha informado que su candidato mejora la agudeza visual o la nitidez, sin causar efectos secundarios desagradables después de dos años. La noticia ha resultado en un aumento del 3% en el precio de las acciones de la compañía .

Los resultados del estudio de Fase III se esperan a finales de este año. Si todo va bien, la biotecnología puede comenzar a pensar en dirigirse a la FDA y la EMApara analizar su lanzamiento al mercado.

La neuropatía óptica hereditaria de Leber (LHON) es una rara enfermedad mitocondrial que tiende a afectar a las personas en su adolescencia o en la adultez temprana, causando una pérdida de visión irreversible. Esto es causado por la muerte de células en el nervio óptico debido a mutaciones en genes mitocondriales como ND4 , que afecta la transmisión de mensajes de los ojos al cerebro. Los primeros síntomas incluyen visión borrosa y nublada , que progresa afectando la agudeza visual y la visión del color.

La anatomía del ojo humano

La terapia génica de GenSight , GS010 , es una inyección intravítrea única en cada ojo, que está diseñada para proporcionar a los pacientes una recuperación duradera de la vista. Se desarrolló utilizando la tecnología de secuencia de dirección mitocondrial de la biotecnología , que insertó un gen ND4 de tipo salvaje en un virus 2 adenoasociado, un vector comúnmente usado para terapias génicas. Esto permite la producción de una proteína ND4 completamente funcional, que puede devolver la función mitocondrial a la normalidad.

Los resultados de un estudio reciente a largo plazo sugieren que GS010 es seguro y efectivo para usar en pacientes con LHON. Después de 96 semanas, no hubo eventos adversos graves o inesperados relacionados con el tratamiento o el procedimiento. Aunque el estudio se centró en la seguridad, los investigadores también vieron una mejora clínica significativa en la agudeza visual para 6 de los 14 pacientes inscritos.

 

GS010 es un AAV2 que incluye el gen ND4, flanqueado por una secuencia de direccionamiento mitocondrial.

Por el momento, GenSight parece ser la única biotecnología que desarrolla una terapia génica para el LHON. En cambio, muchas biotecnologías observan causas más frecuentes de ceguera como la retinitis pigmentosa (RP) . HoramaNightstaRx están dirigidos a mutaciones en los genes PDE6β y RPGR , respectivamente. Mientras tanto, GenSight ha combinado su propio enfoque de terapia génica para RP con un dispositivo portátil que trata los casos causados ​​por 1 de hasta 100 mutaciones diferentes.

Con el gen ND4 responsable del 70% de los casos de LHON en Europa y América del Norte y hasta el 85% en Asia, este fue un buen lugar para que GenSight comenzara su lucha contra la enfermedad. El proyecto de la biotecnología francesa también incluye GS011 , una terapia genética para tratar la mutación ND1 , por lo que podríamos ver que la compañía aumenta gradualmente el número de pacientes que su terapia genética puede ayudar. Si vemos que llega al mercado, esperemos que GenSight se asegure de que el producto sea accesible, evitando los errores cometidos por uniQure con Glybera .

Imágenes - Tyler Olson / shutterstock.com; Neokryuger / shutterstock.com; GenSight.

 

La compañía de terapia genética recibe una designación de enfermedad pediátrica rara para el tratamiento de acromatopsia

Logo RETIMUR

07 de febrero de 2018

MeiraGTx, una compañía de terapia génica con sede en Londres y Nueva York, ha anunciado que las Oficinas de Desarrollo de Productos Huérfanos y Terapéutica Pediátrica de la Administración de Alimentos y Medicamentos de los EE. UU. (FDA) han otorgado la designación de enfermedades pediátricas infrecuentes al candidato a producto de terapia génica AAV2 / 8-hCARp.hCNGB3 (A002) para el tratamiento de pacientes con acromatopsia debido a mutaciones en el gen CNGB3.

A002 recibió anteriormente la designación de medicamento huérfano de la FDA y la Agencia Europea de Medicamentos (EMA) para el tratamiento de ACHM en 2016.

A002 es una terapia génica en investigación de virus adenoasociada diseñada para administrar un ADNc de hCNGB3 optimizado en codones en la parte posterior del ojo para su expresión en fotorreceptores de cono. A002 se administra a través de una inyección sub-retiniana para cubrir la región central de la retina, incluida la fóvea donde se encuentran la mayoría de los conos.

MeiraGTx ha administrado a ocho pacientes en una prueba abierta, multicéntrica, de Fase I / II de escalado de dosis de A002 en individuos diagnosticados con acromatopsia debido a mutaciones bialélicas en CNGB3. El ensayo actualmente está tratando pacientes en la cohorte de tres dosis más alta. El punto final primario del estudio es determinar la seguridad del tratamiento. Los puntos finales secundarios incluyen la mejora en la función visual, incluida la evaluación de la fotofobia / fotoaversión, la función de la retina, la estructura de la retina y las medidas de calidad de vida.

"Con el recibo de nuestra segunda designación de enfermedad pediátrica rara en solo dos meses, tenemos un impulso significativo para nuestra cartera de terapia genética ocular a medida que comencemos en 2018", dijo Zandy Forbes, Ph.D., presidente y CEO de MeiraGTx. "La acromatopsia es un trastorno genético severo y debilitante de la retina para el cual no hay opciones de tratamiento efectivas. Estamos entusiasmados por hacer un progreso tan bueno en la dosificación de pacientes en nuestro ensayo clínico en curso Fase I / II CNGB3 ".