RETIMUR - Asociación Afectados de Retina de la Región de Murcia

Un rayo láser podría curar la RP. (Optogenética)

07 de noviembre 2013

NIH funds researchers using light to control and monitor neural activity

Samarandra Mohanty está explorando un mejor método para iniciar ciertas terapias genéticas que podrían combatir mejor la vista, el deterioro de la enfermedad de la retinosis pigmentaria. Crédito: UT ArlingtonUniversidad de Texas en Arlington investigadores están explorando un mejor método para iniciar ciertas terapias genéticas que podrían combatir mejor el deterioro de la enfermedad de la retinosis pigmentaria.

Los Institutos Nacionales de la Salud están financiando la investigación.

Samarendra Mohanty, profesor asistente de física, espera recibir un total de $ 384,269 durante los próximos dos años en el Instituto Nacional de Trastornos Neurológicos y Accidente Cerebrovascular de los NIH. Su trabajo consiste en utilizar un rayo láser ultrarrápido de infrarrojo para entregar genes que permiten la expresión de las proteínas sensibles a la luz, llamadas opsinas, en células específicas. Expresión que las proteínas ‘permite a los investigadores influir en la actividad neuronal a través de la estimulación óptica o de la luz – una técnica conocida como optogenética. En el pasado, los genes han sido entregados a las células por el virus. Ese método puede tener inconvenientes, tales como las respuestas inmunes, además de los beneficios.

En el método de Mohanty, un rayo láser crea un agujero de tamaño sub-micrométrico transitorio, que permite para el gen que codifica las proteínas para penetrar a través de la membrana celular. Se puede limitar el riesgo de una respuesta inmune, así como la entrega de genes más grandes que los métodos virales, dijo.

Digant Dave UT Arlington profesor de bioingeniería en UT Arlington, es el co-investigador en la nueva concesión. ”Nuestro método de infrarrojo es mínimamente invasiva puede entregar el ADN y otras moléculas impermeables de manera efectiva donde se desee y sólo cuando usted lo quiere”, dijo Mohanty. ”Por ejemplo, en la retinitis pigmentosa, sólo retina periférica comienza a perder sensibilidad a la luz debido a la pérdida de fotorreceptores. Aquí es donde un láser puede entregar los genes, por lo que las neuronas responden a la luz de nuevo. Con un virus, los genes serán entregados en todas partes , causando complicaciones en las zonas que ya están trabajando bien “.

Optogenética como estimulación también es una nueva vía para influir en las neuronas en el cerebro. Los científicos, entre ellos el grupo de investigación de Mohanty, están investigando las formas en que se podría utilizar para comprender cómo funciona el cerebro o para intervenir en caso de trastornos neurológicos o para influir en el comportamiento.

En última instancia, el equipo de Mohanty tiene el objetivo de crear todas las ópticas, basadas en la luz, control y seguimiento de la actividad celular. Así, además de la entrega de la luz con ayuda de los genes, los investigadores también trabajarán en perfeccionar los métodos para estimular la actividad neuronal utilizando la luz del infrarrojo y visible. Algunos de estos métodos se describen en un artículo recientemente publicado llamado “estimulación optogenético de dos fotones de fibra óptica”, que apareció en la revista Optics Letters.

El laboratorio de Mohanty en UT Arlington también utilizará un método denominado interferometría sensible a la fase, para monitorear los cambios en las neuronas que resultan de la activación por la luz. El método de interferometría se llama “sin etiqueta” porque a diferencia de la fluorescencia, se utiliza el cambio en el comportamiento de los rayos de luz, en lugar de manchas, para seguir los cambios en el nivel sub-nanométrica.

“Por la trayectoria del Dr. Mohanty en exploración en el área de la optogenética ha propiciado este apoyo de los Institutos Nacionales de la Salud”, dijo Alex Weiss, presidente del Colegio de departamento de física de la Ciencia. “Estamos contentos de ver que apoya esta investigación prometedora y esperamos ver los resultados de las investigaciones”.

 

Por la Universidad de Texas en Arlington

Fuente original: Phys.org

Traducción: Rodrigo Lanzón

 

Se puede detectar cierto tipo de retinosis pigmentaria en la orina

Los investigadores hacen descubrimiento revolucionario en el diagnóstico
retinitis pigmentosa

Publicado el 15 de octubre de 2013 a las 12:44a.m.

La investigación liderada por científicos médicos en el Bascom Palmer Eye Institute de la Universidad de Miami Miller School de medicina ha producido un descubrimiento revolucionario en el diagnóstico de retinitis pigmentosa , una enfermedad causante de ceguera que afecta a 1 de cada 4.000 personas en los EE.UU.

Rong Wen, MD, Ph.D., y Byron Lam , MD, profesor de oftalmología en el Bascom Palmer , en colaboración con el bioquímico Ziqiang Guan , Ph.D. , profesor asociado de investigación en la Facultad de Medicina de la Universidad Duke, descubrió un marcador clave en sangre y orina que puede identificar a las personas que llevan las mutaciones genéticas en un gen responsable de la retinitis pigmentosa ( RP ) . " Un simple análisis de orina puede decir que tiene las mutaciones que causan RP ", dijo el Dr. Wen.

"Recopilación de la orina es no invasivo y fácil " . La primera mutación en este gen , de nombre DHDDS, fue identificado en 2011 por científicos de la Escuela Miller de Medicina incluyendo a Stephan Zuchner , MD, Ph.D., Presidente interino del Dr. John T. Macdonald Departamento de Fundación Human Genetics, Wen , Lam y Margaret A. Pericak - Vance , Ph.D. , Director del Instituto John P. Hussman para Genómica Humana , en nombre de una pareja del sur de Florida que estaban buscando la razón por la cual tres de sus hijos fueron cegados por RP . Las mutaciones en este gen son más comunes en personas de ascendencia judía asquenazí que en la población general .

RP es un grupo de enfermedades oculares hereditarias que causan la pérdida progresiva de la visión y ceguera debido a la degeneración de la retina , la capa de tejido sensible a la luz en la parte posterior del ojo .

" Es nuestra visión que cada paciente que se ve afectado por una enfermedad hereditaria de los ojos como RP debe tener acceso a un médico que tenga conocimientos sobre las enfermedades , así como a las pruebas de diagnóstico asequible y asesoramiento " , dijo Lam , director del centro de enfermedades oculares hereditarias del Bascom Palmer. "Esta prueba de diagnóstico es una poderosa herramienta que le ayudará en el desarrollo de tratamientos para RP causadas por mutaciones DHDDS " .

La mutación DHDDS tiene un significado especial para la familia Lidsky de South Florida. Tres de los cuatro hijos que están ahora en sus 30 años , comenzaron a perder la vista en la adolescencia . " El hecho de que un análisis de sangre o de orina simple puede identificar el defecto genético que causa este tipo de RP es muy importante " , dijo Betti Lidsky , madre de los niños.

 

Fuente: Bascom Palmer Eye Institute

 

Los genes y las mutaciones causantes de la retinosis pigmentaria.

Los genes y las mutaciones causantes de retinosis pigmentaria.

La retinosis pigmentaria (RP) es un conjunto heterogéneo de retinopatías hereditarias con muchos genes que causan enfermedades, muchas mutaciones son conocidas y de gran variedad de consecuencias clínicas. El progreso en la búsqueda de tratamientos depende en la determinación de los genes y las mutaciones que causan estas enfermedades, que se incluye tanto el descubrimiento de genes y la detección de mutaciones en los países más afectados, en los individuos y en las familias.

A pesar de la complejidad, el progreso sustancial reside en la búsqueda de genes RP y mutaciones. Dependiendo del tipo de RP, y la tecnología utilizada, es posible detectar mutaciones en el 30-80% de los casos.

Uno de los métodos más poderosos para las pruebas genéticas es la “secuenciación profunda "de alto rendimiento, es decir, la secuenciación de próxima generación (NGS). La NGS no sólo ha identificado varios nuevos genes RP también una fracción sustancial de los casos previamente no resueltos que tienen mutaciones en los genes que causan enfermedades conocidas de la retina, pero no necesariamente RP. Aparentemente existe discrepancia entre el defecto molecular y los hallazgos clínicos y pueden propiciar una reevaluación de los pacientes y las familias.

En esta revisión, se resumirá los enfoques actuales para el descubrimiento de genes y mutaciones, se indicará las dificultades y problemas no resueltos. Similares consideraciones se aplicarán a otras formas de las enfermedades hereditarias de la retina.

Enfermedades retinianas hereditarias afectan a más de 200.000 norteamericanos y a millones de personas en todo el mundo (1,3). Docenas de diferentes tipos de enfermedades se incluyen en este conjunto de enfermedades, y más de 190 genes han sido identificados como la causa de una u otra forma de la enfermedad hereditaria de la retina (4, 5).

La retinitis pigmentosa (RP) representa aproximadamente la mitad de los casos. RP en sí es muy heterogéneo: las mutaciones en más de 50 genes que se sabe que causan RP no sindrómica y casi 3.100 mutaciones han sido reportados en estos genes (5, 6).

Formas sindrómicas de RP son igualmente heterogéneos: mutaciones en 12 genes causan síndrome de Usher y 17 genes están asociados con Bardet-Biedl, que en conjunto estas dos enfermedades representan otras 1.200 mutaciones patógenas.

Además de heterogeneidad genética y mutacional, diferentes enfermedades pueden ser causadas por mutaciones en el mismo gen, síntomas de diferentes enfermedades pueden superponerse, y hay poca variación en la expresión clínica, incluso entre individuos que comparten la misma mutación en el mismo gen.

A pesar de la complejidad, ha habido un progreso significativo realizado en los últimos años en la identificación de nuevos genes RP y en el cribado de pacientes para las mutaciones patógenas. Este es en parte el resultado del desarrollo de técnicas de alto rendimiento en mapeado y secuenciación, pero es también el testimonio de un gran número de investigadores y de grupos de trabajo de investigación en esta área.

En las últimas dos décadas, el número de grupos de investigación en el mundo que se centró en la RP genética ya es un puñado de decenas. El potencial de las opciones para los tratamientos también se ha incrementado notablemente.

El propósito de esta revisión es proporcionar una visión general del estado actual de los genes en la RP. Las retinopatías hereditarias son una amplia clase de enfermedades revisadas ​​en otras publicaciones (4, 7). Este es un ámbito en rápida evolución y es alentador notar que cualquier revisión quedará anticuada más temprano que tarde.

 

Heterogeneidad

La retinitis pigmentosa es una enfermedad progresiva , degenerativa de la retina que conduce a la profunda pérdida de la visión o ceguera ( 3 ) . Las características clínicas de la RP son ceguera nocturna, comenzando a menudo en la adolescencia, seguido de pérdida progresiva de la visión periférica y la subsiguiente pérdida de la visión central. En la mediana edad, pacientes con RP pueden retener unos pocos grados de la visión central, pero en muchos casos la enfermedad culmina en ceguera total.

Resultados en el examen de la retina incluyen 'espículas óseas', depósitos de pigmento, atenuación de los vasos retinianos, y característicos cambios en los patrones del electrorretinograma ( ERG ). En un nivel celular, una vista simplificada de la RP es progresiva la disfunción y la pérdida de fotorreceptores, que afecta primero la visión nocturna en la retina periférica media sobre los bastones,  entonces va progresando hacia la parte central de la retina provocando la eventual pérdida de conos ya sea como un resultado directo del proceso de la enfermedad o secundaria a la muerte de los bastones.

Dentro de este panorama general, sin embargo, existe una considerable variación en la edad de inicio, tasa de progresión,  afectación bastones vs conos, la implicación de otras células de la retina, u otros síntomas de RP, tales como el edema macular quístico , y muchas otras características .

RP que está presente al nacer o poco después se denomina a menudo Amaurosis Congénita de Leber (LCA ). RP puede ocurrir sola, como una RP no sindrómica, sin otros hallazgos clínicos , o como RP sindrómica o sistémica con otros trastornos neurosensoriales , anomalías del desarrollo , o complejos fenotipos clínicos.

El síndrome de Usher es RP con sordera congénita o sordera de aparición temprana .

El síndrome de Bardet - Biedl ( BBS) es RP con enfermedad renal , obesidad, polidactilia y retraso en el desarrollo .

RP también puede ser secundaria a enfermedades sistémicas como las enfermedades mitocondriales o diversas formas de la enfermedad degenerativa cerebelar. 

Para simplificar, esta revisión se limita a RP no sindrómica.

La retinitis pigmentosa es excepcionalmente heterogénea.

Esto incluye:

(I) Heterogeneidad genética - muchos diferentes genes pueden causar el mismo fenotipo de la enfermedad

(II) Heterogeneidad alélica - puede haber muchos fallos diferentes en las mutaciones de cada gen

(III) Heterogeneidad fenotípica - Diferentes mutaciones en el mismo gen pueden causar diferentes enfermedades

(IV) Heterogeneidad clínica - La misma mutación en los diferentes individuos pueden producir diferentes consecuencias clínicas, incluso entre miembros de la misma familia. El grado de heterogeneidad de la RP puede ser confusa para los pacientes y los médicos por igual, y es un factor de confusión en el diagnóstico.

Las más obvias son genéticas y alélicas .

Actualmente, se conocen las mutaciones en:

56 genes que causan RP no sindrómica (Tabla 1).

12 genes para el síndrome de Usher.

17 representan el síndrome BBS. (Cuadros 2 y 3).

Se conocen al menos 100  genes relacionados a la RP, tanto de forma alélica o de

heterogeneidad mutacional es igualmente sorprendente . Se cálcula que todos los genes que causan RP no sindrómica , son cerca de 3.100 mutaciones que causan enfermedades que se presentan en bases de datos de mutación ( Tabla 1 ).

Descontando las superposiciones con RP sindrómica , genes que causan Usher o BBS son al menos otras 1.200 mutaciones (Cuadros 2 y 3 ).

Aunque algunas de las mutaciones públicamente reportadas pueden, más tarde, no llegar a ser patógenas, esto es una subestimación significativa debido a que muchas mutaciones se enumeran en bases de datos privadas y no son sin embargo de dominio público. Entre otras preocupaciones que hay, es la necesidad de compartir información para la recogida más sistemática de la mutación fenotipo - genotipo para las enfermedades hereditaria de la retina.

Abrir bases de datos de Variaciones ( 8 ).

Igualmente es confusa la superposición entre los tipos de la enfermedad, los nombres de las enfermedades, y las consecuencias clínicas. En primer lugar, diferentes mutaciones en el mismo gen pueden causar claramente diferentes condiciones. Por ejemplo, a pesar de que la mayoría de las mutaciones causan RP autosómica dominante y la mayoría de las mutaciones RPE65 causan LCA recesiva, algunas mutaciones pueden ser de acción recesiva en RP y algunas mutaciones en RPE65 pueden ser de acción dominante (9-13).

Mutaciones del síndrome de Usher son recesivas y causan RP con sordera, pero las mutaciones en dos Genes Usher, CLRN1 y USH2A, pueden causar una Rp sin sordera de tipo recesiva (14,15).

Para RP no sindrómica, las mutaciones en 23 genes se sabe que causan RP autosómica dominante.

36 genes causar RP recesivas, y 3 genes causan ligada al cromosoma X (XLRP) (5).

Sin embargo, la Tabla 1 muestra que varias de estas enfermedades pueden superponerse entre sí y las Tablas 1-3 muestran que muchos genes causan enfermedades múltiples. En algunos casos, la enfermedad "secundaria" es poco frecuente (por ejemplo, la rodopsina recesiva o dominante en mutaciones de RPE65), pero en algunos casos es común (por ejemplo RP recesiva y USH2A) .

 

En general, no hay correlación simple entre el gen y la enfermedad.

Por último, incluso mutaciones idénticas dentro del mismo gen puede producir diferentes resultados clínicos.  Variación en la edad de aparición entre individuos  o una tasa de progresión inesperada, pero, por ejemplo, mutaciones en PRPF31 no son penetrantes en algunos miembros de la familia (16,17) y las mutaciones en PRPH2 (RDS) producen una amplia gama de afección macular, o síntomas en la retina periférica (18,19). Una consecuencia es que los miembros de la misma familia, visto por diferentes clínicas, puede tener diagnósticos que son consistentes con los hallazgos en el individuo pero incompatibles con la familia. En general, una considerable superposición entre las enfermedades causadas por los genes de la RP da diferentes nombres a un específico tipo de enfermedad. Esto está bien ilustrado por la superposición en la nomenclatura de la enfermedad propuesto por Berger et al. para enfermedades de la retina hereditarias ( 4 ).

Afortunadamente, las técnicas moleculares permiten la identificación del gen y la mutación o mutaciones subyacentes en muchos casos, la adición de un diagnóstico molecular para el diagnóstico clínico. Sin embargo, en algunos casos esto conduce a contradicciones aparentes que requieren un análisis más detallado de resolver.

 

Enfoques técnicos

Las técnicas estándar para el descubrimiento y detección de genes y mutaciones  - la vinculación de cartografía y secuenciación del ADN- se han utilizado durante muchos años. Sin embargo, el desarrollo de alta densidad y alto rendimiento en las técnicas en los últimos 10 años ha incrementado el poder de estos métodos en gran magnitud.

Para la vinculación de cartografía, SNP de alta densidad ( single nucleotide polimorfismo) matrices , tales como la Affymetrix SNP 6,0 / CNV matriz, ( 20 ) permite la vinculación de prueba contra casi 1 millón de marcadores genéticos. Para los efectos prácticos, éstas se reducen a alrededor de 10.000 marcadores más informativos - , con relaciones conocidas a los marcadores contiguos. Sin embargo, incluso con conjuntos de marcadores más pequeños, hay un grave problema por el gran número de pruebas independientes (comparaciones múltiples )

que conducen a la aparente vinculación ' hits' por casualidad.  Afortunadamente , hay muchos más marcadores genéticos , altamente variables en el genoma humano que pueden ser utilizados para refinar vinculación de la cartografía ( 9 ) .

Varios genes RP han sido primero localizados por la vinculación de cartografía en los últimos años (21-25).

Una consecuencia de la disponibilidad de SNP profunda en conjuntos de marcadores es que es posible identificar regiones en los cromosomas homólogos que son idénticos , es decir, las regiones en un par coincidente de cromosomas que se derivan de un solo cromosoma en un ancestro relativamente reciente . Esto identifica la localización cromosómica de mutaciones recesivas idénticas en las familias con consanguinidad o dentro de la familia de reciente apareamiento. Este enfoque de la cartografía de genes recesivos es llamada mapeo de homocigosis o mapeo autocigosis ( 26 ) . Ha sido muy productiva en la identificación de genes RP en familias endogámicas y poblaciones étnicas en donde la endogamia es común ( 27-31) .

Sorprendentemente, incluso en familias que no tienen pruebas de consanguinidad, mutaciones de RP recesivas son más a menudo idénticos por descendencia, ampliando de esta manera la utilidad de la cartografía homocigosis ( 26 ) .

Los métodos para detectar mutaciones en una secuencia de ADN por secuenciación Sanger incluyen nivel , detección de nivel de secuenciación basada en arreglos de mutaciones (por ejemplo, APEX , la "extensión array -primer ' ( 32-34 ) ) , secuenciación de ultra – alto rendimiento y otros.

De éstos, el gran avance en los últimos años en la búsquedade genes RP es la aplicación de secuenciación de ultra- alto rendimiento, se hace referencia generalmente como secuenciación de próxima generación.

( NGS ) ( 35 ) . Secuenciación de Sanger convencional se suele hacer mediante semiautomático , multilane electroforesis capilar (en sí misma una mejora importante sobre los métodos anteriores ). En contraste, NGS hace millones de secuencias y se ejecuta en paralelo en la perla de tamaño micrométrico o en comparables micro - pozos, tras completar hasta un mil millones de pares de bases que lee por barrido. Es decir, la secuenciación de NGS es 1000 veces más rápido que la secuenciación convencional , y mucho menos costoso por secuencia .

Hay varios métodos de NGS y numerosos aplicaciones distintas ( 36 , 37 ) . Lo que la mayoría de los métodos tienen en común es la secuencia corta de lectura , escopeta :

ADN se fragmenta primero en secuencias cortas , leer estas longitudes están en el rango de 100 a 200 pares de bases , y los métodos computacionales se utilizan para " rearmar " el

Fragmento corto que lee en construcciones más grandes . Esto permite una lectura exacta y extremadamente rápida en la secuenciación de grandes regiones del genoma humano, pero algunas características de ADN humano, tales como deleciones y reordenamientos ,repeticiones expandidas , y haplotipos , no son accesibles a NGS sin pasos adicionales .

También, debido al volumen de los datos producidos por NGS , se necesitan recursos bioinformáticos para aprovechar al máximo los resultados.

A pesar de estas limitaciones , NGS ha sido excepcionalmente productivo en el descubrimiento de genes y la detección de mutaciones de RP. En términos generales, hay tres estrategias de NGS :

NGS en todo el exoma, NGS en todo el genoma y NGS de captura dirigida.

NGS en el exoma entero implica la captura de todas las regiones codificantes de proteínas, es decir, todos los exones, que constituyen alrededor de 1,5 % del genoma humano.

Por definición, esta técnica se limita a la búsqueda de mutaciones en las regiones de codificación solamente, pero no obstante se ha llevado a la identificación de varios genes RP y mutaciones nuevas ( 9 , 38 , 39 ) .

NGS en todo el genoma abarca casi la totalidad del genoma humano (aproximadamente 98 % ) , y evita la introducción de artefactos para la captura por el exón , pero aún no está en uso la rutina para el descubrimiento de genes . Las principales limitaciones son los costos de secuenciación, y la gestión y el análisis de los grandes conjuntos de datos resultantes. Sin embargo , es probable que la secuenciación del genoma completo se convertirá en rutina en un futuro próximo , especialmente con el desarrollo de " tecnologías de tercera generación ' ( 40 ) .

Captura dirigida, la tercera estrategia NGS, alcanza los límites de las pruebas a los exones de conocidos genes causantes de enfermedades (41). La desventaja, por supuesto, es que no hay nuevos genes que puedan ser identificados. Las ventajas son que el "espacio" del análisis es mucho más pequeña, se sabe más, a priori, sobre cada uno de los genes, y los costos son mucho más bajos. Por lo tanto ésta es actualmente un enfoque óptimo para la detección de mutaciones de RP, con muchas aplicaciones (42-47).

Por último, algunas mutaciones no se detectan fácilmente por secuenciación o NGS convencional, particularmente grande deleciones y reordenamientos . Algunas deleciones pueden ser detectadas por SNP arrays , y los Affymetrix 6,0 SNP / CNV arrays incluyen sondas de número de copia (CNV ) para la detección de eliminación ( 20 ) . Basado en métodos de amplificación, como MLPA o qPCR , pueden detectar deleciones pequeñas . Éste es un problema importante ya que casi un 3 % de los casos de RP autosómica dominante son causados por deleciones en PRPF31 no detectables por secuenciación ( 17 , 48 ) . Deleciones y reordenamientos similares son encontrados en ABCA4 , una causa común de RP recesivo, y en RPGR , la causa principal de RP ligada al cromosoma X ( 49 ) . Sin embargo, se detectan fácilmente las supresiones de RP ligada a X en los hombres, y el problema principal en secuenciación RPGR es la naturaleza repetitiva de ORF15 .

El estado actual del descubrimiento de genes y mutaciones, la detección, identificación de nuevos genes que causan enfermedades heredadas de la retina heredados como RP, ha progresado a un ritmo constante , según tasa lineal desde hace casi 20 años ( Fig. 1 ) . Aunque las herramientas para el descubrimiento de genes son mucho más potentes , el ritmo constante en los últimos años sugiere que, en general , cada nuevo gen es más raro que los genes anteriores y por lo tanto más difíciles de detectar . NGS Todo el genoma pueden acelerar el descubrimiento de nuevos genes, pero es posible que en los restantes genes RP desconocidos sea más complicado. Sin embargo , no hay manera significativa para predecir el número restante de genes RP.

Las preguntas significativas en este contexto son:

La primera, ¿En qué fracción de los pacientes RP puede que causen enfermedades las mutaciones que se detectan hoy, y la segunda,  ¿Cuándo será posible encontrar mutaciones en casi todos los pacientes , al menos 95 % ?

La respuesta a la primera pregunta depende de la tecnología utilizada y el tipo de RP. Combinando resultados de la secuenciación de Sanger convencional y ( figura 1) asignando e identifincado los genes de enfermedades retinianas en más de tres décadas de investigación.

NGS objetivo de captura, utilizando estimaciones aproximadas , es posible para detectar la mutación o patogénico subyacente en mutaciones en un 20-30% de los casos autosómicos recesivos RP , 60-70 % de los casos autosómica dominante , el 80-85 % de ligada al cromosoma X , y más del 85 % de Usher y BBS.

Simplex , de los casos de RP aislados son más complicadas.

Tradicionalmente, los casos RP simplex se prevé que sea recesivo, con padres portadores no afectados. Esto es cierto en muchos casos , pero hay excepciones . Al menos el 15 % de varones con RP y con otros miembros de la familia no afectados tienen mutaciones en los genes ligados al cromosoma X RPGR o RP2 ( 51 ) . Mutaciones de nueva autosómica dominante representan al menos el 1-2 % de los casos simplex ( 45 , 52 ).

NGS dirigido identifica mutaciones en 19-36 % de RP simplex, pero confirmar la patogenicidad en estos casos es problemática ( 44-47 ) . Una complicación adicional es que la frecuencia de portabilidad para toda las enfermedades hereditarias de la retina en mutaciones en individuos no afectados podrán superar el 20 % ( 53 ) . Eso es , cada mutación es extremadamente rara , pero hay tantos genes y tantas mutaciones, que se agregan como comunes .

La predicción es arriesgada , pero teniendo en cuenta los rápidos avances en los métodos de secuenciación de ADN , y la continuación de identificación de nuevos genes RP , es razonable esperar que dentro de 5 años será posible detectar el gen y la mutación o mutaciones causante en el 95 % de los pacientes . Esto es suponiendo que la mayoría de los restantes casos son monogénica , es decir, causada por un único gen en cada individuo . Dado que las formas digénicas de RP y formas trialelicas de BBS son ya conocidos, la herencia poligénica en las enfermedades de la retina no se puede descartar ( 54 , 55 ) .

Por último , el diagnóstico genético de RP puede cambiar el diagnóstico familiar o formular preguntas acerca de la relación entre el genotipo y el fenotipo . Por ejemplo , al menos el 8 % de las familias con un diagnóstico provisional de RP autosómica dominante en realidad tienen mutaciones en genes RP ligada al cromosoma X ( 56 ) . Las mutaciones en los genes comúnmente asociada con el síndrome de Usher o BBS pueden provocar RP no sindrómica ( 14 , 15 , 57 ) . otros ejemplos pueden surgir de NGS específica de captura . Esto puede ser confuso para el paciente y requiere una explicación y asesoramiento. En algunos casos , se puede requerir la redefinición de la enfermedad de la familia . Conciliación de la clínica con el fenotipo, los antecedentes familiares y los hallazgos genéticos son nuevo paso crítico en el diagnóstico de las enfermedades hereditarias de la retina.

 

Agradecimientos:

Al Apoyo de becas por la Fundación Lucha contra la Ceguera y a la subvención del NIH (Instituto Nacional de Salud USA) EY007142.

El Dr. Daiger es el director de un Laboratorio certificado para el genotipado de enfermedades hereditarias de la retina ® eyeGENE,  e incluye apoyo financiero para las pruebas  genéticas.

 

Table 1. Genes causing non-syndromic retinitis pigmentosaa
 SymbolLocationProteinType of retinitis pigmentosaOther diseasesMutations
  1. a

    Tables are based on the RetNet database, http://www.sph.uth.tmc.edu/retnet/" shape="rect">http://www.sph.uth.tmc.edu/retnet/, accessed May 2013 [5], and the Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/" shape="rect">http://www.hgmd.cf.ac.uk/, accessed May 2013 [6]. References are in RetNet. Some genes appear in more than one table so the sum total of distinct genes in the tables, 82, is less than the sum of the three tables together.

1 ABCA4 1p22.1 ATP-binding cassette transporter—retinal Autosomal recessive Recessive macular dystrophy; recessive fundus flavimaculatus; recessive cone-rod dystrophy 680
2 BEST1 11q12.3 Bestrophin 1 Autosomal dominant; autosomal recessive Dominant vitreoretinochoroidopathy; recessive bestrophinopathy; dominant Best type macular dystrophy 232
3 C2ORF71 2p23.2 Chromosome 2 open reading frame 71 Autosomal recessive   13
4 C8ORF37 8q22.1 Chromosome 8 open reading frame 37 Autosomal recessive Recessive cone-rod dystrophy 4
5 CA4 17q23.2 Carbonic anhydrase IV Autosomal dominant   6
6 CERKL 2q31.3 Ceramide kinase-like protein Autosomal recessive Recessive cone-rod dystrophy with inner retinopathy 8
7 CLRN1 3q25.1 Clarin-1 Autosomal recessive Recessive Usher syndrome 23
8 CNGA1 4p12 Rod cGMP-gated channel alpha subunit Autosomal recessive   8
9 CNGB1 16q13 Rod cGMP-gated channel beta subunit Autosomal recessive   6
23 CRB1 1q31.3 Crumbs homolog 1 Autosomal recessive Recessive Leber congenital amaurosis; dominant pigmented paravenous chorioretinal atrophy 183
11 CRX 19q13.32 Cone-rod otx-like photoreceptor homeobox transcription factor Autosomal dominant Recessive, dominant and de novo Leber congenital amaurosis; dominant cone-rod dystrophy 51
12 DHDDS 1p36.11 Dehydrodolichyl diphosphate synthetase Autosomal recessive   1
13 EYS 6q12 Eyes shut/spacemaker (Drosophila) homolog Autosomal recessive   118
14 FAM161A 2p15 Family with sequence similarity 161 member A Autosomal recessive   6
15 FSCN2 17q25.3 Retinal fascin homolog 2, actin bundling protein Autosomal dominant Dominant macular dystrophy 1
16 GUCA1B 6p21.1 Guanylate cyclase activating protein 1B Autosomal dominant Dominant macular dystrophy 3
17 IDH3B 20p13 NAD(+)-specific isocitrate dehydrogenase 3 beta Autosomal recessive   2
18 IMPDH1 7q32.1 Inosine monophosphate dehydrogenase 1 Autosomal dominant Dominant Leber congenital amaurosis 14
19 IMPG2 3q12.3 Interphotoreceptor matrix proteoglycan 2 Autosomal recessive   10
20 KLHL7 7p15.3 Kelch-like 7 protein (Drosophila) Autosomal dominant   3
21 LRAT 4q32.1 Lecithin retinol acyltransferase Autosomal recessive Recessive Leber congenital amaurosis 10
22 MAK 6p24.2 Male germ-cell associated kinase Autosomal recessive   9
23 MERTK 2q13 c-mer protooncogene receptor tyrosine kinase Autosomal recessive   27
24 NR2E3 15q23 Nuclear receptor subfamily 2 group E3 Autosomal dominant; autosomal recessive Recessive Stargardt disease; Goldmann-Favre syndrome; recessive enhanced S-cone syndrome 45
25 NRL 14q11.2 Neural retina lucine zipper Autosomal dominant; autosomal recessive Recessive retinitis pigmentosa 14
26 OFD1 Xp22.2 Oral-facial-digital syndrome 1 protein X-linked Orofaciodigital syndrome 1, Simpson-Golabi-Behmel syndrome 2 127
27 PDE6A 5q33.1 cGMP phosphodiesterase alpha subunit Autosomal recessive   16
28 PDE6B 4p16.3 Rod cGMP phosphodiesterase beta subunit Autosomal recessive Dominant congenital stationary night blindness 39
29 PDE6G 17q25.3 Phosphodiesterase 6G cGMP-specific rod gamma Autosomal recessive   1
30 PRCD 17q25.1 Progressive rod-cone degeneration protein Autosomal recessive   2
31 PROM1 4p15.32 Prominin 1 Autosomal recessive Dominant Stargardt-like and bulls eye macular dystrophy; dominant cone-rod dystrophy 9
32 PRPF3 1q21.2 Human homolog of yeast pre-mRNA splicing factor 3 Autosomal dominant   3
33 PRPF6 20q13.33 Human homolog of yeast pre-mRNA splicing factor 6 Autosomal dominant   2
34 PRPF8 17p13.3 Human homolog of yeast pre-mRNA splicing factor C8 Autosomal dominant   21
35 PRPF31 19q13.42 Human homolog of yeast pre-mRNA splicing factor 31 Autosomal dominant   65
36 PRPH2 6p21.1 Peripherin 2 Autosomal dominant; digenic with ROM1 Dominant macular dystrophy; dominant vitelliform MD; dominant cone-rod dystrophy; dominant central areolar choroidal dystrophy 123
37 RBP3 10q11.22 Retinol binding protein 3, interstitial Autosomal recessive   2
38 RDH12 14q24.1 Retinol dehydrogenase 12 Autosomal dominant; autosomal recessive Recessive Leber congenital amaurosis 66
39 RGR 10q23.1 RPE-retinal G protein-coupled receptor Autosomal recessive Dominant choroidal sclerosis 7
40 RHO 3q22.1 Rhodopsin Autosomal dominant; autosomal recessive Dominant congenital stationary night blindness 161
41 RLBP1 15q26.1 Retinaldehyde-binding protein 1 Autosomal recessive Recessive Bothnia dystrophy; recessive retinitis punctata albescens; recessive Newfoundland rod-cone dystrophy 20
42 ROM1 11q12.3 Retinal outer segment membrane protein 1 Autosomal dominant; digenic w/ PRPH2   11
43 RP1 8q12.1 RP1 protein Autosomal dominant; autosomal recessive Autosomal dominant and recessive 67
44 RP2 Xp11.23 Retinitis pigmentosa 2 (X-linked) X-linked   76
45 RP9 7p14.3 RP9 protein or PIM1-kinase associated protein 1 Autosomal dominant   2
46 RPE65 1p31.2 Retinal pigment epithelium-specific 65 kDa protein Autosomal dominant; autosomal recessive Recessive Leber congenital amaurosis 134
47 RPGR Xp11.4 Retinitis pigmentosa GTPase regulator X-linked X-linked cone dystrophy 1; X-linked atrophic macular dystrophy 151
48 SAG 2q37.1 Arrestin (s-antigen) Autosomal recessive Recessive Oguchi disease 11
49 SEMA4A 1q22 Semaphorin 4A Autosomal dominant Dominant cone-rod dystrophy 3
50 SNRNP200 2q11.2 Small nuclear ribonucleoprotein 200 kDa (U5) Autosomal dominant   7
51 SPATA7 14q31.3 Spermatogenesis associated protein 7 Autosomal recessive Recessive Leber congenital amaurosis 15
52 TOPORS 9p21.1 Topoisomerase I binding arginine/serine rich protein Autosomal dominant   8
53 TTC8 14q32.11 Tetratricopeptide repeat domain 8 Autosomal recessive Recessive Bardet-Biedl syndrome 14
54 TULP1 6p21.31 Tubby-like protein 1 Autosomal recessive Recessive Leber congenital amaurosis 31
55 USH2A 1q41 Usherin Autosomal recessive Recessive Usher syndrome 392
56 ZNF513 2p23.3 Zinc finger protein 513 Autosomal recessive   1
          Total 3064
Table 2. Genes causing Usher syndromea
 SymbolLocationProteinType of Usher syndromeOther diseasesMutations
  1. RP, retinitis pigmentosa.

  2. a

    Tables are based on the RetNet database, http://www.sph.uth.tmc.edu/retnet/" shape="rect">http://www.sph.uth.tmc.edu/retnet/, accessed May 2013 [5], and the Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/" shape="rect">http://www.hgmd.cf.ac.uk/, accessed May 2013 [6]. References are in RetNet. Some genes appear in more than one table so the sum total of distinct genes in the tables, 82, is less than the sum of the three tables together.

1 ABHD12 2p11.21 Abhydrolase domain containing protein 12 Autosomal recessive type 3-like Recessive PHARC syndrome type 5
2 CDH23 10q22.1 Cadherin-like gene 23 Autosomal recessive 1d; digenic with PCDH15 Recessive deafness without retinitis pigmentosa 167
3 CIB2 15q25.1 Calcium and integrin binding family member 2 Autosomal recessive type 1J   7
4 CLRN1 3q25.1 Clarin-1 Autosomal recessive type 3 Recessive retinitis pigmentosa see RP
5 DFNB31 9q32 Whirlin Autosomal recessive type 2 Recessive deafness without retinitis pigmentosa 13
6 GPR98 5q14.3 Monogenic audiogenic seizure susceptibility 1 homolog Autosomal recessive type 2 Dominant/recessive febrile convulsions 54
7 HARS 5q31.3 Histidyl-tRNA synthetase Autosomal recessive Recessive HARS syndrome 2
8 MYO7A 11q13.5 myosin VIIA Recessive type 1b; recessive USH3-like Recessive deafness without retinitis pigmentosa 263
9 PCDH15 10q21.1 Protocadherin 15 Autosomal recessive type 1f; digenic with CDH23 Recessive deafness without retinitis pigmentosa 52
10 USH1C 11p15.1 harmonin Autosomal recessive Acadian Recessive deafness without retinitis pigmentosa; recessive RP with late-onset hearing loss 26
11 USH1G 17q25.1 Human homolog of mouse scaffold protein containing ankyrin repeats and SAM domain Autosomal recessive Usher syndrome   11
12 USH2A 1q41 Usherin Autosomal recessive type 2a Recessive retinitis pigmentosa see RP
          Total 600
Table 3. Genes causing Bardet-Biedl syndrome (BBS)a
 SymbolLocationProteinType of BBSOther diseasesMutations
  1. RP, retinitis pigmentosa.

  2. a

    Tables are based on the RetNet database, http://www.sph.uth.tmc.edu/retnet/" shape="rect">http://www.sph.uth.tmc.edu/retnet/, accessed May 2013 [5], and the Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/" shape="rect">http://www.hgmd.cf.ac.uk/, accessed May 2013 [6]. References are in RetNet. Some genes appear in more than one table so the sum total of distinct genes in the tables, 82, is less than the sum of the three tables together.

1 ARL6 3q11.2 ADP-ribosylation factor-like 6 Autosomal recessive   14
2 BBS1 11q13 BBS1 protein Autosomal recessive   65
3 BBS2 16q12.2 BBS2 protein Autosomal recessive   61
4 BBS4 15q24.1 BBS4 protein Autosomal recessive   29
5 BBS5 2q31.1 Flagellar apparatus-basal body protein DKFZp7621194 Autosomal recessive   18
6 BBS7 4q27 BBS7 protein Autosomal recessive   26
7 BBS9 7p14.3 Parathyroid hormone-responsive B1 protein Autosomal recessive   27
8 BBS10 12q21.2 BBS10 (C12orf58) chaperonin Autosomal recessive   76
9 BBS12 4q27 BBS12 protein Autosomal recessive   45
10 CEP290 12q21.32 Centrosomal protein 290 kDa Autosomal recessive Recessive Joubert syndrome; recessive Leber congenital amaurosis; recessive Meckel syndrome; recessive Senior-Loken syndrome 157
11 INPP5E 9q34.3 Inositol polyphosphate-5-phosphatase E Autosomal recessive Recessive MORM syndrome; recessive Joubert syndrome 7
12 LZTFL1 3p21.31 Leucine zipper transcription factor-like 1 Autosomal recessive   1
13 MKKS 20p12.2 McKusick-Kaufman syndrome protein Autosomal recessive   44
14 MKS1 17q22 Meckel syndrome type 1 protein Autosomal recessive Recessive Meckel syndrome 26
15 SDCCAG8 1q43 Serologically defined colon cancer antigen 8 Autosomal recessive Recessive ciliopathy-related nephronophthisis, 13
16 TRIM32 9q33.1 Tripartite motif-containing protein 32 Autosomal recessive Recessive limb-girdle muscular dystrophy 8
17 TTC8 14q32.11 Tetratricopeptide repeat domain 8 Autosomal recessive Recessive retinitis pigmentosa see RP
          Total 617

 

References

1. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations

causing retinitis pigmentosa. Arch Ophthalmol 2007: 125: 151–158.

2. Haim M. Epidemiology of retinitis pigmentosa in Denmark. Acta

Ophthalmol Scand Suppl 2002: 233: 1–34.

3. Heckenlively JR, Daiger SP. Hereditary retinal and choroidal degenerations,

in Emery and Rimoin’s Principals and Practice of Medical

Genetics, 5th edn. Chapter 147. Philadelphia: Churchill Livingston Elsevier,

2007: 3197–3227.

4. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis

of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010:

29: 335–375.

5. RetNet. The Retinal Information Network 2013. Retrieved from

http://www.sph.uth.tmc.edu/RetNet/. Accessed on May 2013.

6. HGMD. Human Gene Mutation Database (Biobase Biological

Databases) 2013. Retrieved from http://www.hgmd.cf.ac.uk/. Accessed

on May 2013.

7. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS.

Photoreceptor degeneration: genetic and mechanistic dissection of a

complex trait. Nat Rev Genet 2010: 11: 273–284.

8. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen

JT. LOVD v.2.0: the next generation in gene variant databases. Hum

Mutat 2011: 32: 557–563.

9. Bowne SJ, Humphries MM, Sullivan LS et al. A dominant-acting

mutation in RPE65 identified by whole-exome sequencing causes

retinitis pigmentosa with choroidal involvement. Euro J Hum Genet

2011: 10: 1074–1081.

10. Dryja TP, McGee TL, Hahn LB et al. Mutations within the rhodopsin

gene in patients with autosomal dominant retinitis pigmentosa. N Engl

J Med 1990: 323: 1302–1307.

11. Marlhens F, Bareil C, Griffoin JM et al. Mutations in RPE65 cause

Leber’s congenital amaurosis. Nat Genet 1997: 17: 139–141.

12. Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja

TP. Mutations in the RPE65 gene in patients with autosomal recessive

retinitis pigmentosa or Leber congenital amaurosis. Proc Natl Acad Sci

USA 1998: 95: 3088–3093.

13. Rosenfeld PJ, Cowley GS, McGee TL, Sandberg MA, Berson EL, Dryja

TP. A null mutation in the rhodopsin gene causes rod photoreceptor

dysfunction and autosomal recessive retinitis pigmentosa. Nat Genet

1992: 1: 209–213.

14. Khan MI, Kersten FF, Azam M et al. CLRN1 mutations cause nonsyndromic

retinitis pigmentosa. Ophthalmology 2011: 118: 1444–1448.

15. Rivolta C, Sweklo EA, Berson EL, Dryja TP. Missense mutation in the

USH2A gene: association with recessive retinitis pigmentosa without

hearing loss. Am J Hum Genet 2000: 66: 1975–1198.

16. McGee TL, Devoto M, Ott J, Berson EL, Dryja TP. Evidence that the

penetrance of mutations at the RP11 locus causing dominant retinitis

pigmentosa is influenced by a gene linked to the homologous RP11

allele. Am J Hum Genet 1997: 61: 1059–1066.

17. Sullivan LS, Bowne SJ, Seaman CR et al. Genomic rearrangements

of the PRPF31 gene account for 2.5% of autosomal dominant retinitis

pigmentosa. Invest Ophthalmol Vis Sci 2006: 47: 4579–4588.

18. Felbor U, Schilling H, Weber BH. Adult vitelliform macular dystrophy

is frequently associated with mutations in the peripherin/RDS gene.

Hum Mutat 1997: 10: 301–309.

19. Sears JE, Aaberg TA Sr, Daiger SP, Moshfeghi DM. Splice site

mutation in the peripherin/RDS gene associated with pattern dystrophy

of the retina. Am J Ophthalmol 2001: 132: 693–699.

20. Korn JM, Kuruvilla FG,McCarroll SA et al. Integrated genotype calling

and association analysis of SNPs, common copy number polymorphisms

and rare CNVs. Nat Genet 2008: 40: 1253–1260.

21. Chakarova CF, Khanna H, Shah AZ et al. TOPORS, implicated in

retinal degeneration, is a cilia-centrosomal protein. Hum Mol Genet

2011: 20: 975–987.

22. Friedman JS, Ray JW, Waseem N et al. Mutations in a BTB-Kelch

protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J

Hum Genet 2009: 84: 792–800.

23. Li L, Nakaya N, Chavali VR et al. A mutation in ZNF513, a putative

regulator of photoreceptor development, causes autosomal-recessive

retinitis pigmentosa. Am J Hum Genet 2010: 87: 400–409.

24. Naz S, Riazuddin SA, Li L et al. A novel locus for autosomal recessive

retinitis pigmentosa in a consanguineous Pakistani family maps to

chromosome 2p. Am J Ophthalmol 2010: 149: 861–866.

25. Zhao C, Bellur DL, Lu S et al. Autosomal-dominant retinitis

pigmentosa caused by a mutation in SNRNP200, a gene required for

unwinding of U4/U6 snRNAs. Am J Hum Genet 2009: 85: 617–627.

26. Littink KW, den Hollander AI, Cremers FP, Collin RW. The power

of homozygosity mapping: discovery of new genetic defects in patients

with retinal dystrophy. Adv Exp Med Biol 2012: 723: 345–351.

27. Zelinger L, Banin E, Obolensky A et al. A missense mutation in

DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated

with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am J

Hum Genet 2011: 88: 207–215.

28. Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C et al. Homozygosity

mapping reveals null mutations in FAM161A as a cause of

autosomal-recessive retinitis pigmentosa. Am J Hum Genet 2010: 87:

382–391.

29. Bandah-Rozenfeld D, Collin RW, Banin E et al. Mutations in IMPG2,

encoding interphotoreceptor matrix proteoglycan 2, cause autosomalrecessive

retinitis pigmentosa. Am J Hum Genet 2010: 87: 199–208.

30. Dvir L, Srour G, Abu-Ras R, Miller B, Shalev SA, Ben-Yosef

T. Autosomal-recessive early-onset retinitis pigmentosa caused by a

mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP

phosphodiesterase. Am J Hum Genet 2010: 87: 258–264.

31. den Hollander AI, McGee TL, Ziviello C et al. A homozygous

missense mutation in the IRBP gene (RBP3) associated with autosomal

recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2009: 50:

1864–1872.

32. Kurg A, Tonisson N, Georgiou I, Shumaker J, Tollett J, Metspalu A.

Arrayed primer extension: solid-phase four-color DNA resequencing

and mutation detection technology. Genet Test 2000: 4: 1–7.

33. Tonisson N, Oitmaa E, Krjutskov K et al. Molecular diagnostics.

Oxford: Academic Press, 2010.

34. Tonisson N, Oitmaa E, Krjutskov K et al. Arrayed primer extension

microarrays for molecular diagnostics. Oxford: Academic Press, 2010.

35. Tucker T, Marra M, Friedman JM. Massively parallel sequencing:

the next big thing in genetic medicine. Am J Hum Genet 2009: 85:

142–154.

36. Liu L, Li Y, Li S et al. Comparison of next-generation sequencing

systems. J Biomed Biotechnol 2012: 2012: 251364.

37. Quail MA, Smith M, Coupland P et al. A tale of three next generation

sequencing platforms: comparison of Ion Torrent, Pacific Biosciences

and Illumina MiSeq sequencers. BMC genomics 2012: 13: 341.

38. Tucker BA, Scheetz TE, Mullins RF et al. Exome sequencing and

analysis of induced pluripotent stem cells identify the cilia-related

gene male germ cell-associated kinase (MAK) as a cause of retinitis

pigmentosa. Proc Natl Acad Sci USA 2011: 108: E569–E576.

39. Zuchner S, Dallman J, Wen R et al. Whole-exome sequencing links a

variant in DHDDS to retinitis pigmentosa. Am J Hum Genet 2011: 88:

201–206.

40. Schadt EE, Turner S, Kasarskis A. A window into third-generation

sequencing. Hum Mol Genet 2010: 19: R227–R240.

41. Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat

Rev Genet 2013: 14: 295–300.

42. Audo I, Bujakowska KM, Leveillard T et al. Development and

application of a next-generation-sequencing (NGS) approach to detect

known and novel gene defects underlying retinal diseases. Orphanet J

Rare Dis 2012: 7: 8.

43. Chen X, Zhao K, Sheng X et al. Targeted sequencing of 179 genes

associated with hereditary retinal dystrophies and 10 candidate genes

identifies novel and known mutations in patients with various retinal

diseases. Invest Ophthalmol Vis Sci 2013: 54: 2186–2197.

44. Glockle N, Kohl S, Mohr J et al. Panel-based next generation

sequencing as a reliable and efficient technique to detect mutations in

unselected patients with retinal dystrophies. Eur J Hum Genet 2013.

Epub ahead of print.

45. Neveling K, Collin RW, Gilissen C et al. Next-generation genetic

testing for retinitis pigmentosa. Hum Mutat 2012: 33: 963–972.

46. O’Sullivan J, Mullaney BG, Bhaskar SS et al. A paradigm shift in the

delivery of services for diagnosis of inherited retinal disease. J Med

Genet 2012: 49: 322–326.

47. Shanks ME, Downes SM, Copley RR et al. Next-generation sequencing

(NGS) as a diagnostic tool for retinal degeneration reveals a much

higher detection rate in early-onset disease. Eur J Hum Genet 2013:

21: 274–280.

48. K¨ohn L, Bowne SJ, Sullivan LS et al. Breakpoint characterization of a

novel approximately 59 kb genomic deletion on 19q13.42 in autosomaldominant

retinitis pigmentosa with incomplete penetrance. Eur J Hum

Genet 2009: 17: 651–655.

49. Fahim AT, Bowne SJ, Sullivan LS et al. Allelic heterogeneity and

genetic modifier loci contribute to clinical variation in males with Xlinked

retinitis pigmentosa due to RPGR mutations. PLoS ONE 2011:

6: ie23021.

50. Daiger SP, Sullivan LS, Bowne SJ et al. Application of whole-exome

and retinal-capture next-generation DNA sequencing to identify diseasecausing

mutations in families with a diagnosis of autosomal dominant

retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013 E-Abstract, ARVO

Annual Meeting.

51. Branham K, Othman M, Brumm M et al. Mutations in RPGR and RP2

account for 15% of males with simplex retinal degenerative disease.

Invest Ophthalmol Vis Sci 2012: 53: 8232–8237.

52. Sohocki MM, Daiger SP, Bowne SJ et al. Prevalence of mutations

causing retinitis pigmentosa and other inherited retinopathies. Hum

Mutat 2001: 17: 42–51.

53. Nishiguchi KM, Rivolta C. Genes associated with retinitis pigmentosa

and allied diseases are frequently mutated in the general population.

PLoS ONE 2012: 7: e41902.

54. Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due

to mutations at the unlinked peripherin/RDS and ROM1 loci. Science

1994: 264: 1604–1608.

55. Katsanis N, Ansley SJ, Badano JL et al. Triallelic inheritance in Bardet-

Biedl syndrome, a Mendelian recessive disorder. Science 2001: 293:

2256–2259.

56. Churchill JD, Bowne SJ, Sullivan LS et al. Mutations in the X-linked

retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families

with a provisional diagnosis of autosomal dominant retinitis pigmentosa.

Invest Ophthalmol Vis Sci 2013: 54: 1411–1416.

57. Riazuddin SA, Iqbal M,Wang Y et al. A splice-site mutation in a retinaspecific

exon of BBS8 causes nonsyndromic retinitis pigmentosa. Am

J Hum Genet 2010: 86: 805–812.

 

Revisión

Los genes y las mutaciones causantes de la retinosis pigmentaria.

Recibido el 23 de abril de 2013.

Revisado y aceptado para su publicación el 20 de mayo 2013.

Publicación online autorizada el 19 de Junio de 2013.

Hallada el 19 de Septiembre de 2013.

Traducido el 23 de Septiembre de 2013 por Rodrigo Lanzón.

Enlace donde se puede descargar el PDF original en inglés.

http://onlinelibrary.wiley.com/doi/10.1111/cge.12203/full

StemCells, Inc. anunció ayer nuevos datos preclínicos que demuestran que las células HuCNS-SC (R) preservan la función visual, manteniendo fotorreceptores normales y saludables.

A continuación os reproducimos un artículo publicado en el día de ayer en EE.UU. y traducido ayer mismo por nuestro socio Rodrigo Lanzón. Además RETIMUR ha podido saber de manos del propio investigador español Nicolás Cuenca la veracidad de la noticia que significa un paso más en la lucha contra la Retinosis Pigmentaria. Además nos congratula y enorgullece que un investigador español. muy comprometido con la Retinosis Pigmentaria y con FARPE y FUNDALUCE sea quien ha llevado a cabo dicha investigación, de la cual se beneficia una empresa americana dado el escaso apoyo que los investigadores reciben en nuestro país.

NEWARK, California, 18 de septiembre, 2013 (GLOBE NEWSWIRE)


 StemCells, Inc. ha anunciado hoy la publicación de los datos preclínicos que confirman que las células patentadas HuCNS-SC de la Sociedad (las células madre neurales humanas purificadas) preservan los fotorreceptores y la función visual en un modelo ampliamente utilizado de degeneración de la retina. Los datos muestran no sólo que las células HuCNS-SC preservan el número de fotorreceptores que de otro modo se perderían, sino también que los fotorreceptores supervivientes parecen sanos y normales, y mantienen su conexión sináptica a otras células importantes necesarias para la función visual.

El estudio fue publicado en Investigative Ophthalmology and Visual Science (IVOS), la revista de la Asociación para la Investigación en Visión y Oftalmología, y está disponible en (http://www.iovs.org/content/early/recent).

Estos resultados son muy importantes para los trastornos de pérdida de la visión, el más notable de los cuales es la degeneración macular relacionada con la edad (AMD), que afecta a aproximadamente 30 millones de personas en todo el mundo.

"Este estudio demuestra que, a nivel celular y subcelular, los fotorreceptores sobrevivientes tiene todos los elementos que caracterizan a un fotorreceptor sano y normal, y tienen las conexiones sinápticas correctas ", dijo Nicolás Cuenca, PhD, profesor del Departamento de Fisiología, Genética y Microbiología de la Universidad de Alicante, España, y autor principal del estudio. "La preservación anatómica sólida de los fotorreceptores y sus conexiones sinápticas es más que probable llevan a la preservación de la función visual.

 "Además, este estudio confirma nuestra hipótesis preliminar que las células fagocitan segmentos externos de los fotorreceptores HuCNS-SC. La actividad fagocítica de las células HuCNS-SC restaura una función que normalmente es realizada por las células epiteliales pigmentadas de la retina (EPR). "

La compañía está llevando a cabo un ensayo clínico de fase I / II en la forma seca de AMD, la forma más común de la enfermedad. Los datos preclínicos que se basa este ensayo clínico de fase I / II se publicó anteriormente en el European Journal of Neuroscience (http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2011.07970.x/abstract).

Esos datos demostraron que las células HuCNS-SC protegen los fotorreceptores de acogida (ambos, conos y bastones) y preservan la visión en el Colegio Real de Cirujanos (RCS), un modelo animal bien establecido de la enfermedad de la retina que se ha utilizado ampliamente para evaluar las terapias celulares potenciales.

Un ensayo clínico de fase I / II de la Compañía en la DMAE seca está actualmente reclutando a pacientes en el Byers Eye Institute de Stanford en Palo Alto, California, y en la Fundación Retina del Suroeste en Dallas, Texas. La empresa dosificó recientemente la primera dosis alta en un paciente del ensayo. Hasta la fecha, un total de cinco pacientes han sido dosificados en el ensayo de 16 pacientes.

Los pacientes interesados en participar en el ensayo clínico deben comunicarse con la Byers Eye Institute de Stanford, al (650) 498-4486 o la Fundación Retina del sudoeste al (214) 363-3911.

La FDA autorizó a la compañía abrir 3 sitios adicionales en los Estados Unidos.
Fuente original: https://www.univercellmarket.com/@offers/news/view/4326/

RETIMUR